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1 Introduction

In the leader election problem each process pi has a local variable leaderi, and it is
required that all the local variables leaderi forever contain the same identity, which is
the identity of one of the processes.If processes may crash, the system is fully asyn-
chronous, and the elected leader must be a process that does not crash, leader election
cannot be solved [4]. Not only the system must no longer be fully asynchronous, but the
leader election problem must be weakened to the eventual leader election problem. This
problem is denoted Ω in the failure detector parlance [1,2]. Notice that the algorithm
must elect a new leader each time the previously elected leader crashes.

ADD channels were introduced in [5], as a realistic partially synchronous model of
channels that can lose and reorder messages. Each channel guarantees that some subset
of the messages sent on it will be delivered in a timely manner and such messages are
not too sparsely distributed in time. More precisely, for each channel there exist two
constants K and D, not known to the processes (and not necessarily the same for all
channels), such that for every K consecutive messages sent in one direction, at least
one is delivered within D time units after it has been sent.

Even though ADD channels seem so weak, it is possible to implement an eventu-
ally perfect failure detector in an arbitrarily connected network of ADD channels [3]. A
implementation of 3P using messages of size O(n log n) in the same model was pre-
sented [6]. The goal of this paper is move from 3P to Ω using messages of O(log n).

This paper shows that it is possible to implement Ω in an arbitrarily connected
network of eventual ADD channels where asynchronous processes may fail by crashing
using messages of O(log n). Then, we propose an implementation of Ω in networks
with unknown membership whose messages are eventually of size O(log n) too.

Designing leader election ADD-based algorithms using messages whose size is
bounded, is a difficult challenge since while the constants K and D do exist. We found
it even more challenging to work under the assumption that some edges might not sat-
isfy any property at all; our algorithm works under the assumption that only edges on
an (unknown to the processes) spanning tree are guaranteed to comply with the ADD
property.

2 Model of Computation

The system consists of a finite set of processes Π = {p1, p2, ..., pn}. Any number of
processes may fail by crashing. A process is correct if it does not crash, otherwise, it
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is faulty. The communication network is represented by a directed graph G = (Π,E),
where an edge (pi, pj) ∈ E means that there is a unidirectional channel that allows
the process pi to send messages to pj . Is required the existence of a spanning tree
containing all correct processes and the root being the leader, i.e. the correct process
with the smallest identity.

A directed channel (pi, pj) satisfies the ADD property if there are two constants K
and D (unknown to the processes such that for every K consecutive messages sent by
pi to pj , at least one is delivered to pj within D time units after it has been sent. The
other messages from pi to pj can be lost or experience arbitrary delays.

initialization —-Code for pi—-
(1) leaderi ← i; hopboundi[i]← n; set timer i[i, n] to +∞;
(2) for each j ∈ {1, · · · , n} \ {i} and each x ∈ {1, · · · , n}
(3) do timeout i[j, x]← any positive integer; set timer i[j, x] to timeout i[j, hb];
(4) set penaltyi[j, x] to − 1; hopboundi[j]← 0
(5) end for.

(6) every T time units of clocki() do
(7) if (hopboundi[leaderi] > 1)
(8) then for each j ∈ out neighborsi

do send ALIVE(leaderi, hopboundi[leaderi]− 1) to pjend for
(9) end if.

(10) when ALIVE(`, hb← n− k) such that ` 6= i is received % from a process in in neighborsi
(11) if (` ≤ leaderi)
(12) then leaderi ← `;
(13) if ([timeri[leaderi, hb] expired)

then increase the value of timeout i[leaderi, hb] end if;
(14) set timeri[leaderi, hb] to timeout i[leaderi, hb];
(15) not expiredi ← {x | timeri[leaderi, x] not expired };
(16) hopboundi[leaderi]←

max{x ∈ not expired with smallest non-negative penaltyi[leaderi, x]}
(17) end if.

(18) when timeri[leaderi, hb] expires and (leaderi 6= i) do
(19) penaltyi[leaderi, hb]← penaltyi[leaderi, hb] + 1;
(20) if

(
∧1≤x≤n ([timeri[leaderi, x] expired)

)
(21) then leaderi ← i
(22) else same as lines 15-16
(23) end if.

Algorithm 1: Eventual leader election in the 3ADD model with known membership
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3 An Algorithm for Eventual Leader Election
in the 3ADD Model with Unknown Membership

The second algorithm (only described here due space limitations) solves eventual leader
election in the 3ADD model with unknown membership, which means that, initially, a
process knows nothing about the network, it knows only its input/output channels.

Initially pi communicate its identity to its neighbors. Once its neighbors know about
it, pi no longer send its identity. And the same with other names that pi learns. For that,
pi keeps a pending set for every channel connected to it that helps it to keep track of the
information that it needs to send to its neighbors. So initially, pi adds the pair (new, i)
to every pending set.

When process pi receives an ALIVE() message from pj , this message can contain
information about the leader and the corresponding pending set that pj saves for pi.
First, pi processes the information contained in the pending set and then processes the
information about the leader. If pi finds a pair with a name labeled as new and does not
know it, it stores the new name in the set knonwi, increases its hopbound value, and
adds to every pending set (except to the one belonging to pj) this information labeled
as new. In any case, pi needs to communicate pj that it already knows that information,
so pi adds this information to the pending set of pj but labeled as an acknowledgment.

When pj receives name labeled as an acknowledgment from pi, i.e. (ack, name),
it stops sending the pair (new, name) to it, so it deletes that pair from pi’s pending set.
Eventually, pi receives a pending set from pj not including (new, name), so pi deletes
(ack, name) from pj’s pending set.

As in Algorithm 1, every process keeps as leader a process with minimum id. This
part is similar to Algorithm 1, only ignoring the penalties since we are assuming that
all channels are 3 ADD.

4 Conclusion
The 3ADD model is a particularly weak partially synchronous communication model.
Assuming first that the correct processes are connected by a spanning tree made up of
3 ADD channels, this article has presented an algorithm that elects an eventual leader,
using messages of only size O(log n).
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