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Abstract. We present a new deterministic algorithm for broadcast in radio
networks in a model where each station can transmit at most once and the
topology of the network is known to the algorithm. Our algorithm works in
time D+O(

√
nlogn) and the best previous algorithm for this problem has

complexity D+O(
√
nlogn). We also present a new technique to transfer

algorithms satisfying a certain monotonicity assumption working only for small
diameter networks into an algorithm working in any graphs.

1 Introduction

Model We have an undirected graph G=(V,E) with a distinguished node r∈V . Node
r initially holds a message (we assume that the contents of the message can be delivered
in a single transmission). Time is divided into discrete steps (or rounds). In each step
each station can be in one of three states: it can transmit some message, listen to the
channel or stay idle. When exactly one neighbor of some listening station is transmitting
in a given round, then the transmitted message is received by this node. We say that
that a collision occurs, if two neighbors of some station are transmitting in the same
round. We assume that the topology of the network is known to the algorithm.

Broadcast problem The objective in the 1-Shot problem is to deliver the message from
r to all the nodes of the network with an additional restriction that each station can
transmit in at most one round.

Related work An algorithm for 1-Shot presented in Gasieniec et al. [1] has complex-
ity D+O(

√
nlogn), which given an Ω(D+

√
n) [1] lower bound leaves a gap of

multiplicative factor of logn for D<
√
n.

Our results We present a deterministic O(D+
√
nlogn) algorithm for 1-Shot.

Notation We denote for any v∈V by dv the length of a shortest paths between r and
v. We denote by D, the diameter of the graph and by Dr=maxv∈V dv the eccentricity
of node r. Note that Dr≤D≤2·Dr.

Definition 1. A broadcast algorithm is called monotone if two conditions are satisfied:
1. for any two nodes such that u receives the message before v we have du≤dv,
2. in every step, the set of broadcasting nodes B have identical distance to r.
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2 1-Shot algorithm
The problem can be solved for bipartite graphs in optimal time O(

√
n) using the

algorithm presented in [1]. We reuse that algorithm to get a monotone algorithm for
graphs with small diameter. For each i=0,...,Dr, we denote ni= |{u∈V :du=i}| and
we will say that the nodes {u∈V :du=i} constitute the i-th layer of the graph.

Run the algorithm for bipartite graphs from [1, Theorem 3.4] in sequence between
each pair of layers (first between layers 0 and 1, then between layers 1 and 2 etc).

Algorithm 1: SmallDiam

Lemma 1. Algorithm SmallDiam solves the 1-Shot problem in time O(
√
nD).

(All omitted proofs are provided in the Appendix.) SmallDiam is monotone and by
Lemma 1 it solves 1-Shot in time O(

√
nlogn) for graphs with diameter O(logn). Small-

Diam can be used to derive a time-efficient algorithm for 1-Shot problem for graph
with large diameter.

In order to achieve this, we use a standard definition of ranking, based on the Strahler
Number introduced in hydro-geology [3], used in a number of papers in the context
of radio communication in known topology networks (e.g., [2]).

We use the procedure Gathering-Spanning-Tree from [2], which defines the explicit
construction of spanning tree T and the ranking with properties (see [2, Lemma 2.4]):

(P0) Dr=D
(T)
r , where D(T)

r is the eccentricity of node r, when using only edges of tree T ,
(P1) rank(r)≤ log2n+1,
(P2) for any two nodes v,w with rank(v)=rank(w) and dv=dw, parent of w in tree T

is not a neighbor of v in graph G.
For any node v∈V \{r} we define by parent(v), the parent of v in tree T .
Graph of paths The ranking can be seen as partition of the tree into subpaths of nodes
with the same ranking. In our construction we treat each subpath (of tree T ) with the
same ranking as a super-node in a graph G′=(V ′,E′).
Definition 2 (Paths). Given graph G=(V,E) and the ranked spanning tree T , we
first find heads h∈V of each path with the property that rank(parent(h))>rank(h). For
each such node we construct a path of maximum length in tree T (by the definition of
the ranking there is always at most one child with the same ranking). This creates a
partition of the set of vertices V into a family of disjoint subsets (call them P1,P2,....
For any such path P , directly from the definition we obtain the following properties:
1. Any two nodes u,v∈P satisfy rank(u)=rank(v).
2. If P=(p1,p2,...) we have dpi =dpi+1−1 (i.e., the distance to r is always increasing

when walking along the path).

Definition 3 (Graph of paths). Given graph G=(V,E) and the ranked spanning
tree T and the partition into paths P1,P2,... we denote the ranking of all the nodes in P
as rank(P) and its node that is closest to r by head(P)=argminv∈Pdv. The vertex set
of the graph G′ will be the set of paths {P1,P2,...}. We define the edges E′ of graph G′
as follows. There is an edge between P and P ′ if for some u∈P ′, (u,head(P))∈E.
Note that due to property (P1), the diameter of G′ is O(logn).

If we run algorithm SmallDiam on graph G′, each vertex v′∈V ′ would transmit in some
step a(v′). For any node v∈V , we denote by super(v) a node from G′ that contains
v and we assign for each v∈V , a(v)=a(super(v)).



For any v∈V let function b(v) equal to 1 if node v is the last node (i.e., furthest
from r) of its path (as defined in Defintion 2) and 0 otherwise. We are ready to define
our algorithm for 1-Shot in any graph.

Transmit in step t(v)=dv+3·(2·a(v)+b(v))
Algorithm 2: OneShot

Lemma 2. If in algorithm OneShot, for some nodes u,u′∈V , neighbors of node v (in
graph G), we have t(u)=t(u′), then:

1. du=du′, 2. a(u)=a(u′), 3. b(u)=b(u′)

Theorem 1. Algorithm OneShot solves 1-Shot problem in time Dr+O(
√
nlogn).

Proof. Case 1: rank(v)=rank(parent(v)). In this case we will prove that if parent(v)
has the message in step t(parent(v)), then the message will be delivered to v in this
step. We need to show that in this step no other neighbor of v transmits a message.

Assume for contradiction that for some u, neighbor of v we have t(u)=t(parent(v))
(and u 6=parent(v)). By Lemma 2 we have du=dparent(v). By the monotonicity of Small-
Diam we also have that rank(u)=rank(parent(v)). Since parent(v) is not the last node
on its path, then b(u)=2 hence also by Lemma 2 b(u)=2. Thus there is another node
w (we cannot have v=w because T is a tree), with dw=dv and u=parent(w). We get
the contradiction because edge (v,parent(w)) in graph G cannot exist by property (P2).
Furthermore we can observe that for v: t(v)>t(parent(v)), because we have, that

rank(v)≥rank(parent(v)) by the construction of tree T . This implies by the monotonicity
of algorithm SmallDiam, that a(parent(v))≤a(v), hence t(v)>t(parent(v)).
Case 2: rank(v)<rank(parent(v)). In this case v is the beginning of its path (i.e.,

v=head(super(v))). Algorithm SmallDiam is correct by Lemma 1 hence in some step
t∗, node super(v) receives the message from some node w′∈V ′ in step a(w′). And by
the construction of the graph of paths G′ we have that v is adjacent to some node
w ∈ V for which w′ = super(w). Now we want to show that in step t(w), node w
delivers the message to v. Assume for contradiction that the transmission of node w
collides at v with the transmission of some other node u. We have by Lemma 2, that
du=dw and a(u)=a(w). Consider nodes super(w) and super(u). Since du=dw we have
super(w) 6=super(u) (by property 2 from Definition 2). This means that there would
be a collision between super(w) and super(u). In effect super(v) would not receive the
message in step a(super(w)), a contradiction.

We also need to show that t(v)>t(w) – which means that v is not required to transmit
before it receives the message. We know that dw=dv−1 and by the monotonicity of
algorithm SmallDiam we have that a(w)<a(v) hence we get t(v)>t(w). ut
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APPENDIX

Proof of Lemma 1

Proof. It is easy to see that algorithm 1 is a correct 1-Shot algorithm. To prove the time
complexity observe that the time to transmit the message between layers i and i+1 is
O(
√
ni+ni+1). The total time isO

(∑
i∈{0,1,...Dr}

√
ni

)
, hence using Jensen’s inequality:∑

i∈{0,1,...Dr}

√
ni=(Dr+1)

∑
i∈{0,1,...Dr}

√
ni

Dr+1
≤(Dr+1)

√∑
i∈{0,1,...Dr}ni

Dr+1
∈O(
√
nD)

ut

Proof of Lemma 2

Proof. Since u and u′ are both neighbors of v we have |du−dv|≤1, |du′−dv|≤1 hence
|du−du′|≤2. (1)

Since t(u)=t(u′), then:
du=du′(mod 3) (2)

From (1) and (2) we get that du = du′. This implies that also 2 · a(u) + b(u) =
2·a(u′)+b(u′). If we had b(u)=1 and b(u′)=0, the left side of the equality would be
odd and the right would be even. Thus b(u)=b(u′) and also a(u)=a(u′). ut
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